基于加权排列熵和DE-ELM的滚动轴承故障诊断

作者:吴新忠; 张旭; 李博华; 夏令祥
来源:制造技术与机床, 2020, (02): 127-132.
DOI:10.19287/j.cnki.1005-2402.2020.02.027

摘要

针对滚动轴承振动信号非平稳非线性的特征,提出一种基于加权排列熵和差分进化算法优化极限学习机(DE-ELM)的滚动轴承故障诊断方法。首先利用自适应噪声的完全集合经验模态分解处理轴承振动信号得到固有模态函数(IMF),然后计算主要IMF分量的加权排列熵组成故障特征向量,最后利用差分优化算法(DE)优化极限学习机隐含层输入权值和偏置,并将故障特征向量作为DEELM的输入。实验证明,加权排列熵能够精确提取故障特征,DE-ELM算法能有效提高故障分类精度。与多种方法相比,该方法更加准确可靠。