摘要

针对现有火灾检测算法仍存在的模型复杂、检测速度慢、误检率高等问题,提出一种基于级联稀疏查询机制的轻量化火灾检测网络LFNet。首先,建立了轻量化的图像特征提取模块ECDNet,其通过在YOLOv5s主干网络中嵌入轻量化注意力模块ECA (efficient channel attention),用于解决火灾检测中火焰与烟雾的多尺度难点;其次,利用深层特征提取模块FPN+PAN,对不同层级的特征图进行深度处理和多尺度融合;最后,利用嵌入轻量化的级联稀疏查询模块CSQ (cascade sparse query)提升对早期火灾中的小火焰与薄烟雾的检测准确率。实验表明,本文方法在mAP和Precision等客观指标上的综合表现达到最优,同时在实现较高检测精度时的参数量也较低,能够满足实际场景的火灾检测要求。