基于标签关系改进的多标签特征选择算法

作者:陈福才; 李思豪; 张建朋; 黄瑞阳
来源:计算机科学, 2018, 45(06): 228-234.
DOI:10.11896/j.issn.1002-137X.2018.06.041

摘要

多标签特征选择是应对数据维度灾难现象的主要方法之一,可以在降低特征维度的同时提高学习效率,优化分类性能。针对目前特征选择算法没有考虑标签间的相互关系,以及信息量的衡量范围存在偏差的问题,提出一种基于标签关系改进的多标签特征选择算法。首先引入对称不确定性对信息量进行归一化处理,然后用归一化的互信息量作为相关性的衡量方法,并据此定义标签的重要性权重,对依赖度和冗余度中的标签相关项进行加权处理;进而提出一种特征评分函数作为特征重要性的评价指标,并依次选择出评分最高的特征组成最佳特征子集。实验结果表明,与其他算法相比,该算法在提取出更加精确的低维特征子集后,不仅能够有效提高面向实体信息挖掘的多标签学习算法的性能,也能提高基于离散特征的多标签学习算法的效率。

全文