摘要

目的 针对包含混合噪声的3维坐标形式的骨骼运动数据优化问题,提出一种由双向循环自编码器和卷积自编码器串联构成的优化网络,其中双向循环自编码器用于使网络输出的优化数据具有更高的位置精度,卷积自编码器用于使优化数据具有更好的平滑性。方法 首先,利用高精度动捕数据库预训练一个感知自编码器;然后,用“噪声—高精度”数据对训练双自编码器,并在训练过程中添加隐变量约束。其中隐变量约束由预训练的感知自编码器返回,其作用在于能够使网络输出保持较高的精度并具有合理骨骼结构,使算法适用于提升运动数据的细节层次。结果 实验分别在合成噪声数据集和真实噪声数据集上进行,与最新的卷积自编码器(convolutional auto-encoder, CAE)、双向循环自编码器(bidirectional recurrent auto-encoder,BRA)以及双向循环自编码器加感知约束(BRA with perceptual constraint, BRA-P)3种深度学习方法进行比较,在位置误差、骨骼长度误差和平滑性误差3项量化指标上,本文方法的优化结果与最新的3种方法在合成噪声数据集上相比,分别提高了33.1%、25.5%、12.2%;在真实噪声数据集上分别提高了27.2%、39.2%、16.8%。结论 本文提出的双自编码器优化网络综合了两种自编码器的优点,使网络输出的优化数据具有更高的数据精度和更好的平滑性,且能够较好地保持运动数据的骨骼结构。