摘要
为了有效识别光纤周界系统的振动信号,提出一种多重分形谱参数和改进概率神经网络相结合的光纤振动信号识别方法.该方法能够避免特征提取过程中需要选择经验阈值和模式识别过程中需要确定平滑因子的不足.首先,检验分析光纤振动信号多重分形的存在性和有效性.然后,计算和提取光纤振动信号的多重分形谱参数,构成能够准确描述信号非线性和复杂性特性的特征向量.最后,采用改进的概率神经网络算法进行自适应地学习和分类,实现对不同光纤振动信号的识别.采用现场实验采集的四种振动信号对该方法进行验证,结果表明,平均识别率达到96.25%,识别时间为1.63s.该方法在正确识别率方面优于传统的概率神经网络算法.
- 单位