基于GRA与SVM-mixed的货运量预测方法

作者:梁宁; 耿立艳; 张占福; 梁毅刚
来源:交通运输系统工程与信息, 2016, 16(06): 94-99.
DOI:10.16097/j.cnki.1009-6744.2016.06.015

摘要

铁路货运量与其影响因素之间关系复杂,单一核函数支持向量机(SVM)难以进行准确描述,而且各因素对铁路货运量的影响程度具有差异性,若忽略这种差异性,将难以获得理想的铁路货运量预测结果.为此,本文提出一种基于灰色关联分析(GRA)与混合核函数支持向量机(SVM-mixed)的铁路货运量预测方法.该方法采用灰色关联分析确定各影响因素的权重,再将赋予权重的影响因素作为输入变量,构建多项式核函数与径向基核函数线性组合的SVM-mixed预测模型.针对SVM-mixed参数难以确定问题,采用果蝇优化算法(FOA)选择SVM-mixed最优参数.基于中国铁路货运量的实例分析表明,该方法可有效提高铁路货运量的预测精度,为准确预测铁路货运量提供了一种新途径.

  • 单位
    石家庄铁道大学四方学院

全文