摘要

固体氧化物燃料电池(SOFC)测试存在费用高、实施困难以及耗时长等问题,因此,提出了一种基于径向基(radial basis function, RBF)神经网络的SOFC建模方法。首先采用数据驱动的方式利用RBF神经网络模型对电池中阳极、阴极、电解质厚度等微观结构对SOFC性能的影响进行分析,然后针对RBF神经网络模型参数选取困难、易陷入局部极值的问题,提出一种改进果蝇算法(improved fruit fly optimization algorithm, IFOA)对其进行优化,自动确定模型参数的同时确保其收敛于全局最优解。仿真结果表明,所提方法能够准确描述微观结构变化对SOFC性能的影响,相对于支撑向量机(support vector machine, SVM)模型能够获得更高的预测精度。

全文