摘要

评论数据的情感分析一直是自然语言研究的热点之一,特别是评论观点丰富性、情感化、多元化、非结构化等特征方面的研究近年来深受大家关注。本文基于AI Challenger2018细粒度情感分析比赛为研究背景,在分析GCAE和SynATT两种模型基础上,通过研究方面类别情绪分析(ACSA)方法,提出了CNN-GCAE和CNN-SynATT模型,解决了原来模型在数据处理方面的不足,提高了情感分析的精准度和召回率。实验结果表明,改进模型对评论数据情感分析的准确率效果明显。