摘要
针对精准医疗中图像配准方法收敛速度慢、精度不够高的问题,提出一种基于改进头脑风暴优化(Improved brain storm optimization,IBSO)算法的医学图像配准方法。配准过程分为3个阶段:首先,将待配准图像进行多分辨率分解;然后,使用IBSO算法对低分辨率图像进行全局粗配准;最后,利用单纯形搜索法对高分辨图像精配准。相比粒子群和单纯形结合算法、差分进化和Powell结合算法,以及头脑风暴和Powell结合算法,在单模态实验中,所提算法平均耗时较以上3种算法分别降低了32.89%、13.91%和13.66%,且最大误差、平均误差最小;在多模态实验中,互信息、归一化互信息、交叉累计剩余熵与归一化互相关指数均优于上述3种配准算法。实验结果表明,所提算法可以有效地提升医学图像配准的精度与速度。
- 单位