引入生态扩张主义的改进生物地理学优化算法

作者:张永贤; 陈杨谨瑜; 邰万文; 李伟
来源:计算机应用研究, 2021, 38(09): 2696-2700.
DOI:10.19734/j.issn.1001-3695.2020.12.0566

摘要

针对生物地理学优化算法(biogeography-based optimization,BBO)前期搜寻范围不足、后期易陷入局部最优等问题,提出一种引入生态扩张主义(ecological imperialism,EI)的改进生物地理学优化算法(EI-BBO)。首先,该算法通过在原始栖息地的周围寻找新栖息地,增强了初始化群体的多样性;其次,通过对栖息地进行改良式扩张,提高了算法后期的收敛效率;最后,通过梯度下降对最优解领域进行二次收敛,提高了算法的收敛精度。在CEC2014常用的12个优化测试函数上进行50次蒙特卡罗实验,结果表明无论是最优适应度值、平均适应度值还是标准差值EI-BBO,该算法总体表现均优于其他三种智能优化算法,说明EI-BBO能够提高寻找最优解的能力并提升搜索稳定性。

全文