摘要
针对传统制冷站控制系统易产生振荡,且无法实现系统性能整体优化的问题,提出一种制冷站非线性预测控制策略,优化目标函数设计为满足建筑冷量需求的同时,尽可能提高系统整体能效.为解决上述两个优化目标之间的矛盾关系,采用模糊逻辑设计了优化目标权重自适应模块,实时求取权重因子最优解;针对非线性系统在线优化求解困难问题,提出基于神经网络的非线性滚动优化算法,采用神经网络作为反馈优化控制器,并将系统优化目标函数作为在线寻优性能指标,结合Euler-Lagrange方法和随机梯度下降法对控制器权值和阈值进行在线寻优,算法计算量小,占用存储空间适中,便于采用低成本的现场控制器实现制冷站预测控制.仿真实验结果表明,所提出的预测控制策略与PID控制相比,在未加入优化目标函数权重自适应模块情况下,系统平均能效比提高约32.5%;进行优化目标函数权重自适应寻优后,系统平均能效提高约39.43%.
- 单位