摘要

目标检测在自然场景和遥感场景中的研究极具挑战。尽管许多先进的算法在自然场景下取得了优异的成果,但是遥感图像的复杂性、目标尺度的多样性及目标密集分布的特性,使得针对遥感图像目标检测的研究步伐缓慢。本文提出一个新颖的多类别目标检测模型,可以自动学习特征融合时的权重,并突出目标特征,实现在复杂的遥感图像中有效地检测小目标和密集分布的目标。模型在公开数据集DOTA和NWPU VHR-10上的实验结果表明检测效果超过了大多数经典算法。