摘要

自回归模型在洪水预报实时校正中应用广泛。针对自回归模型进行连续多时段校正时中间误差系列缺失问题,提出一种基于历史洪水预报误差系列的样本重组自回归外延方法,以淮河流域王家坝断面为背景,选用洪量相对误差、洪峰相对误差、峰滞时间和确定性系数四个指标开展校正效果评估,并与时程递推外延方法对比。结果表明:样本重组外延方法可以提升洪水预报精度,延长洪水预报有效预见期,特别在降低洪量误差和提高洪水过程的拟合精度上优势更为显著。同时,该方法泛化能力较强,具有实用价值。