摘要
在机器学习的不同应用领域,出现了很多优秀的极限学习机分类模型。研究者往往愿意公开这些模型的结构以及参数,但不愿公开原始训练数据。针对如何仅利用现有的模型和少量具有新特征的样本得到一个更高效的识别模型的问题,提出一种特征增量极限学习机算法。该算法能从具有新特征的样本中学习知识,提高现有模型的识别精度。在真实世界图像和三轴加速度传感器数据集上的测试结果表明,该算法能有效地工作,在不需要以往训练样本参与的情况下,能一定程度上提高已有模型的识别精度,得到新的识别模型。
- 单位
在机器学习的不同应用领域,出现了很多优秀的极限学习机分类模型。研究者往往愿意公开这些模型的结构以及参数,但不愿公开原始训练数据。针对如何仅利用现有的模型和少量具有新特征的样本得到一个更高效的识别模型的问题,提出一种特征增量极限学习机算法。该算法能从具有新特征的样本中学习知识,提高现有模型的识别精度。在真实世界图像和三轴加速度传感器数据集上的测试结果表明,该算法能有效地工作,在不需要以往训练样本参与的情况下,能一定程度上提高已有模型的识别精度,得到新的识别模型。