摘要

实例分割是一项具有挑战性的任务,它不仅需要每个实例的边界框,而且需要精确的像素级分割掩码.最近提出的端到端的全卷积实例感知分割网络(FCIS)在检测与分割的结合方面做得很好.但是,FCIS没有利用低层特征,而低层次的特征信息在检测和分割上都证明是有用的.在FCIS的基础上,提出了一种新的模型,充分利用了各层次的特征,并对实例分割模块进行了优化.该方法在检测分支中使用了具有大型卷积核的可分离卷积来获得更精确的边界框.同时,设计了一个包含边界细化操作的分割模块,以获得更精确的掩模.此外,将Resnet-101网络中的低级、中级和高级特征组合成4个不同级别的新特征,每个新特征都被用于生成实例的掩码.这些掩码被相加之后通过进一步细化以产生最终的最精确的掩模.通过这3项改进,实验结果表明,该方法明显优于基线方法 FCIS,相比于FCIS,该方法在PASCAL VOC数据集上的评测指标mAPr@0.5和mAPr@0.7分别提高了4.9%和5.8%.

全文