摘要
针对中国股票市场,提出了一种基于注意力机制的LSTM股价趋势预测模型。选取42只中国上证50从2009年到2017年的股票数据为实验对象,根据股票市场普遍认可的经验规则,分别对每个技术指标进行量化处理得到股票涨跌的趋势数据,并和交易数据混合作为预测模型的输入,然后使用基于注意力机制的LSTM模型提取股价趋势特征进行预测。实验结果表明:引入股票离散型趋势数据到预测模型中,能够在已有交易数据和技术指标的基础上提升预测精确度,与传统的机器学习模型SVM和单一的LSTM模型相比,基于注意力机制的LSTM模型具有更好的预测能力。
- 单位