摘要

及时、准确地获取覆膜农田的空间分布信息是防治地膜微塑料污染的基础。为准确地识别黄土高原地区的覆膜农田,本研究构建了基于Sentinel-2遥感影像和随机森林算法的适用于黄土高原覆膜农田遥感识别的特征集组合与多时相组合方案。以甘肃省临夏县、宁夏回族自治区彭阳县和山西省山阴县作为测试区,陕西省旬邑县作为验证区开展识别研究。首先,基于随机森林算法,针对3个不同的作物生育期(播期、生长旺盛期和收获期),在7种不同的特征集组合方案中优选出各时期识别精度最高的方案。然后,基于不同作物生育期的遥感影像及其对应的最优特征集组合方案,构建不同的多时相组合来进行覆膜农田识别并优选多时相组合。最后,利用旬邑县来验证构建的优选特征集组合与多时相组合识别覆膜农田的有效性,并绘制各研究区的覆膜农田空间分布图。结果表明:相比于其他遥感识别特征因子,Sentinel-2遥感影像光谱特征集中的可见光波段(B2、B3和B4)和短波红外波段(B11和B12),指数特征集中的归一化差值裸地与建筑用地指数(NDBBI)、归一化水体指数(NDWI)、裸土指数(BSI)、归一化建筑物指数(NDBI)和改进的归一化水体指数(MNDWI),纹理特征集中的和平均(savg)和相关性(corr)可以作为覆膜农田识别的优选输入特征变量。在7种特征集组合方案中,光谱+指数方案是播期和收获期识别覆膜农田的优选方案,在这两个时期对4个研究区的覆膜农田进行识别的F1值分别大于87%和57%,而光谱+指数+纹理方案是生长旺盛期识别覆膜农田的优选方案,该方案识别4个研究区覆膜农田的F1值均大于71%。基于多时相遥感影像的覆膜农田识别精度高于仅基于单时相遥感影像的精度,其中播期+生长旺盛期+收获期多时相组合可作为黄土高原覆膜农田识别的优选多时相组合,该组合在4个研究区识别覆膜农田的F1值均大于92%。总体而言,基于随机森林算法和本研究优选的特征集组合与多时相组合方案能够较为精准地识别黄土高原地区的覆膜农田。