为了提高三维人体重建精度并使得重建结果更加可控,设计了一种基于图卷积的三维人体重建方法。该方法不依赖任何现有的参数化人体模型,以人体掩码图像和少量的人体测量尺寸作为输入,借助图卷积神经网络直接回归三维人体网格模型的顶点坐标,其本质是利用图卷积算子对内置的模板人体进行变形。大量实验证明,通过显式地融入人体测量数据并辅以相应的损失函数,重建精度大幅提高,重建人体的各项测量尺寸误差均小于1 cm,且重建效果优于其他相关方法。