摘要

在运用Kalman滤波进行SINS动基座传递对准时,当模型存在误差或系统噪声不能反映实际噪声时,会降低滤波精度甚至导致滤波发散。针对这个问题,提出基于改进Elman神经网络的SINS动基座传递对准方法。首先通过增加输出层节点的反馈来改进普通的Elman神经网络模型,其次采用强跟踪滤波器对改进Elman神经网络进行训练。利用仿真数据对该算法进行验证,结果表明,该算法能够克服Kalman滤波的缺陷,提高传递对准精度达100%~150%。