摘要
针对交通标志检测小目标数量多、定位困难及检测精度低等问题,本文提出一种基于改进YOLOv3的交通标志检测算法.首先,在网络结构中引入空间金字塔池化模块对3个尺度的预测特征图进行分块池化操作,提取出相同维度的输出,解决多尺度预测中可能出现的信息丢失和尺度不统一问题;然后,加入FI模块对3个尺度特征图进行信息融合,将浅层大特征图中包含的小目标信息添加到深层小特征图中,从而提高小目标检测精度.针对交通标志数据集特点,使用基于GIoU改进的TIoU作为边界框损失函数替换MSE函数,使得边界框回归更加准确;最后,通过k-means++算法对TT100K交通标志数据集进行聚类分析,重新生成尺寸更小的候选框.实验结果表明,本文算法与原始YOLOv3算法相比mAP提升11.1%,且检测每张图片耗时仅增加6.6 ms,仍符合实时检测要求.与其他先进算法相比,本文算法具有更好的检测精度和检测速度.
- 单位