摘要
针对电力大数据流的异常检测问题,该文将流数据聚类算法与电力大数据相结合,针对现有流数据聚类算法不易存储全部数据、断电数据易丢失等问题,以及流数据聚类算法对于离线阶段聚类算法实时应答的要求,从数据的完整性、安全性以及流数据聚类算法的低时间复杂度的角度出发,对CluStream流数据聚类算法进行改进,提出流式K-means聚类算法。对在线阶段,使用Redis集群进行流数据的缓冲,并设计节点时间衰减策略,增大心跳消息中有效消息所占比例;对离线阶段聚类算法进行优化,使用最佳距离法确定初始聚类中心,减少迭代次数;最后,使用所提出的流式K-means聚类算法进行用户用电异常行为检测,实验结果表明,该算法能够很好的发现用户用电异常行为。
- 单位