摘要
提出了一种基于FCOS神经网络的小建筑物目标检测算法,针对FCOS模型在特征提取阶段提取到的小建筑物目标特征较少问题,引入多尺度检测和可变形卷积方式,加强网络对小建筑物目标的特征提取能力,并通过改进后的SGE注意力机制降低特征图中的干扰噪声权重。改进后的网络可以提取到更多的小建筑物目标特征,对环境干扰噪声的鲁棒性更强。在自己搭建的数据集上进行了实验测试,结果表明,在相同环境下网络改进后建筑物的整体检测准确率提升了1.7%,其中对小建筑物目标提升了3.6%,减少了小建筑物目标漏检、误检的问题。
-
单位自动化学院; 南京航空航天大学