摘要
利用迁移学习,在三种主流的卷积网络框架上进行微调并比较分析血细胞图像的分类结果。实验使用了4种类别的血液细胞图像样本,模型均为端到端的训练方式,不需要繁琐的图像处理和人工特征提取步骤。实验结果表明,利用迁移学习能够在医学领域有限的训练样本下达到了较高的分类准确率,缩短训练时间,提高了模型的鲁棒性。
- 单位
利用迁移学习,在三种主流的卷积网络框架上进行微调并比较分析血细胞图像的分类结果。实验使用了4种类别的血液细胞图像样本,模型均为端到端的训练方式,不需要繁琐的图像处理和人工特征提取步骤。实验结果表明,利用迁移学习能够在医学领域有限的训练样本下达到了较高的分类准确率,缩短训练时间,提高了模型的鲁棒性。