摘要
投喂作为水产养殖过程中的一个关键环节,饵料的投喂量直接影响水产品的质量和养殖成本。然而,目前的投喂方法包括人工投喂和机器定时定量投喂,大多依靠人工经验,很难实现精准投喂。本文基于改进的ResNet34识别鱼群不同的饱腹程度。根据鱼群在不同饱腹阶段表现的摄食行为创建了含有5种不同饱腹程度的数据集,并采用数据增强操作对图像进行预处理。其次在原始模型ResNet34的基础上,本文提出使用坐标注意力机制,使模型在对图像进行特征提取的过程中能够做到专注于更大区域范围。并且使用深度可分离卷积的方式来代替传统卷积,减少模型参数量。为了评估改进的有效性,分析了改进后的模型在鱼群饱腹程度数据集上的性能,并将其与原模型ResNet34、AlexNet、VGG16、MobileNet-v2、GoogLeNet等经典卷积神经网络架构进行比较。综合实验结果表明,该模型相较于原模型参数量减少46.7%,准确率达到93.4%,相较于原模型提升3.4个百分点,同时改进后的模型在准确率、精确度、召回率等方面也都优于其他卷积神经网络。综上所述,本模型实现了性能与参数量之间的良好平衡,为后续模型在实际养殖环境中的部署并指导养殖户改善和制定投喂策略提供了可能。
- 单位