摘要

目的半张量积压缩感知模型是一种可以有效降低压缩感知过程中随机观测矩阵所占存储空间的新方法,利用该模型可以成倍降低观测矩阵所需的存储空间。为寻求基于该模型新的重构方法,同时提升降维后观测矩阵的重构性能,提出一种采用光滑高斯函数拟合l_0-范数方法进行重构。方法构建降维随机观测矩阵,对原始信号进行采样;构建可微且期望值为零的光滑高斯函数来拟合不连续的l_0-范数,采用最速下降法进行重构,最终得到稀疏信号的估计值。结果实验分别采用1维稀疏信号和2维图像信号进行测试,并从重构概率、收敛速度、重构信号的峰值信噪比等角度进行了测试和比较。验证结果表明,本文所述算法的重构概率、收敛速度较该模型的l_q-范数...

  • 单位
    浙江树人大学