摘要

目前的照片精细化识别主要是基于传统机器学习,识别精度无法保证大范围应用,部分基于神经网络模型的方法在提升精度的同时难以兼顾效率。基于此,提出一种轻量化的卷积神经网络模型,减少了模型的参数量与计算量,从而提高速度。方法包含跨阶段融合以及多尺度融合策略,强化模型的特征学习能力,提升模型的预测精度。在利用三调照片对菠萝、柚子、香蕉等地表植被的识别中,通过与主流模型的对比实验发现,提出的模型在识别速度和精度方面均有较大提高。