摘要
社交网络上广泛传播的人脸图像易被未授权的自动识别系统推断出敏感信息,这为用户隐私带来了威胁。为保护用户隐私,一些方法通过在人脸上添加具有可迁移性的扰动来去除可识别信息。然而,它们生成的结果由于存在较为明显的扰动使得视觉感知效果较差,因此并不适合在社交网络上分享。为此,提出了一种基于美颜的对抗性人脸生成方案Adv-beauty。Adv-beauty利用人脸匹配器和美颜鉴别器来协同监督生成器的训练过程,促使生成器在原始人脸上产生类似美颜的扰动来混淆人脸匹配器,换句话说美颜带来的像素变化遮盖了扰动产生的不良视觉效果。此外,在身份损失上设置对抗性阈值,用来防止身份特征的过分偏离而导致的人脸区域扭曲。充分的实验表明,Adv-beauty不仅能够保持良好的视觉效果,而且能够防御多种未知人脸识别分类器和商业APIs。
- 单位