摘要
命名实体识别作为实现自然语言理解的关键步骤被广泛研究。传统机器算法需要大量特征工程而且领域自适应能力弱,准确率低。针对该问题,提出一种基于BERT(Bidirectional Encoder Representations from Transformers)模型和深度卷积注意力网络DeepCAN(Deep Convolutional Attention Network)进行中文实体识别。该模型首先通过BERT预训练语言模型得到字的动态嵌入表示;然后,将得到的向量序列输入DeepCAN来获取序列化文本的上下文抽象特征;最后,通过CRF(Conditional Random Field)进行命名实体标注。实验表明,该模型在SIGHAN2006数据集上能够达到93.37%F1值,对比当前在该数据集上最好的实验结果提高了2.73%。
- 单位