摘要

提出一种基于深度强化学习的智能灯亮度个性化调节方法,综合考虑自然光亮度及用户位置对用户实际感受亮度的影响,动态计算并设置灯光亮度,以满足用户个性化使用习惯。在每次完成灯光亮度自动调节后,根据用户是否再次进行手动调节设定正、负反馈,训练强化学习模型逐渐拟合用户使用习惯。实验分别实现了DQN、DDQN和A3C三种算法,在基于DIALux环境产生的数据集上进行对比分析,并给出原型系统的软硬件实现。