摘要
针对现有文本到图像生成(text-to-image synthesis, T2I)方法采用冗余的阶段性网络结构,同时缺乏对文本特性有效利用从而影响网络完全收敛的问题,提出了一种细粒度的层次化生成对抗网络(generative adversarial networks, GAN)。该网络利用多维度文本特征提取器充分地“发掘”(explore)文本语义特征;通过堆叠层次化模块,即空间仿射生成模块和累加结合模块,更好地“利用”(exploit)主干网络的生成性能。在3个基准数据集上的实验充分表明,所提方法在量化指标和可视化效果方面均显著领先于现有方法。实现代码已经公开在https://github.com/qikizh/EE-GAN。
-
单位电子科技大学; 之江实验室