摘要
考虑到齿轮箱振动信号存在非平稳性和非线性等特点导致故障特征提取困难的问题,提出了一种基于互补集合经验模态分解(CEEMD)和多尺度排列熵(MPE)相结合的故障特征提取方法。首先对齿轮箱振动信号进行互补集合经验模态分解,并根据相关系数原则对各模态分量进行筛选,再利用多尺度排列熵对筛选出的模态分量进行特征提取;最后将提取出的故障特征输入到极限学习机(ELM)中进行分类识别,并与传统的径向基(RBF)神经网络进行对比,实验结果表明:采用CEEMD和MPE相结合的办法能够有效提取齿轮箱振动信号的故障特征,极限学习机能够准确、快速地进行齿轮箱故障识别。
- 单位