摘要
针对目前已有损伤识别方法难以实时跟踪结构损伤且计算量大的问题,提出了一种基于递归本征正交分解(Recursive Proper Orthogonal Decomposition,RPOD)与强跟踪扩展卡尔曼滤波(Strong Tracking Extended Kalman Filter,STEKF)相结合的模型降阶与结构损伤在线识别方法,对动载荷作用下的结构损伤识别进行了研究。利用RPOD方法在线更新并实时建立反映结构状态的降阶模型,解决未知载荷作用下多自由度结构动力分析计算量大且难以收敛的问题,同时跟踪损伤的演化并对其进行定位;通过S TEKF方法跟踪降阶模型的状态向量,识别因损伤退化的降阶模型参数。分别采用六层剪切型框架的数值模拟与三层钢框架的模型试验验证了该方法的可行性,结果表明,所提出的方法能够准确建立降阶模型并跟踪降阶模型参数的时变历程,同时可以有效地识别出剪切型建筑结构损伤的位置和程度,即使在处理高程度噪声时仍有较高的精度。
-
单位河北大学; 建筑工程学院