摘要

针对遥感图像语义分割中的小目标漏检和分割边界粗糙的问题,提出一种基于金字塔注意力机制的遥感图像语义分割模型(PANet)。该模型由特征编码和特征解码两部分组成。编码部分从多元数据中提取多层次特征,并使用基于通道注意力机制的金字塔池化结构加强对重要通道的注意力,提取多尺度特征。解码部分对多层次特征进行逐步前向融合,利用浅层的空间细节信息,修复图像像素定位,精细化分割目标边界。在ISPRS公开数据集上的实验证明了该方法的有效性。

全文