摘要

微表情持续时间短、表达强度低,给训练有效模型带来了挑战。针对此问题,提出了一种基于像素特征的微表情识别方法。对图像序列的面部区域进行裁剪,消除背景噪声;将每一帧的像素矩阵与第一帧(中性表情)做差处理,提取面部变化;对做差的结果累加,进一步突出面部表情;使用搭建的浅层CNN网络进行分类。在3个公共微表情数据集组成的交叉数据集上进行K折(K-fold)交叉验证实验中,所提方法的3个评价指标ACC(accuracy)、UF1(unweighted F1-score)和UAR(unweighted Average Recall)分别达到了0.830 4、0.782 7和0.794 4,表明了该方法的有效性。与LBP-TOP等8个模型的对比实验中,所提方法的指标明显优于对比模型,验证了该方法的优越性。