摘要
传统大地电磁反演通常是基于确定性梯度的迭代求解,不仅需要大量时间计算雅可比矩阵,还依赖于初始模型的输入和正则化因子等参数的设置。近年来学者们不断引入机器学习方法以试图改善大地电磁反演,该方法不需要计算雅可比矩阵,不用输入初始模型,训练好的网络仅需几毫秒就可实现反演成像。这里利用Google团队提出的Transformer神经网络经典框架搭建大地电磁数据和模型之间的映射网络,以9 240组正演数据为样本,对Transformer网络参数进行训练。采用南非开源大地电磁数据,实现了由视电阻率图像到电阻率模型的反演成像。研究表明:(1)经训练后的Transformer网络可以较准确的反映出异常体位置和大小;(2)网络实现了简单的矩阵并行化运算,大幅度提高训练的效率,且成像效率高于传统的反演。
- 单位