基于TensorFlow框架搭建卷积神经网络对电池片电致发光图像进行缺陷识别。选取公开的数据集,其中包含了电池片的不同种类缺陷。在传统的VGGNet网络的基础上使用全卷积神经网络进行训练,并分析不同损失函数和dropout概率在数据集上的训练效果。经过实验证明,该算法实现了对电池片是否有缺陷的准确识别。研究还得出压缩网络结构对算法训练速率能有大幅提升,这使得简化的模型更具有可迁移性,为大范围的实时缺陷识别提供了一种有效方案。