摘要

随着大数据的发展和城市化进程的推进,城市交通路况预测成为智慧城市的焦点课题。而目前已有的实时路况预测模型由于软硬件的不足而不能进行准确高效的预测。文章利用真实的城市交通大数据,基于Spark分布式内存计算框架,提出了一种高效的实时路况预测方法,其中实时路况用路段的平均速度体现。首先并行地对大量车辆的全球定位系统数据进行水平时间窗口和垂直时间窗口切片抽样,然后利用Spark计算估测历史样本在各个时间段内历史平均速度的概率分布,最后采用贝叶斯最大后验估计基于新到的样本对未来的路况进行预测。实验结果表明,文章提出的方法可实现高效准确的实时路况预测。