摘要

针对大型机械滚动轴承故障数据存在高噪声、高维度的问题,提出一种基于改进堆叠自编码器的故障诊断方法。基于改进的Dropout方法构建分类深度自编码网络模型,在预训练阶段采用逐层贪婪算法自适应提取高维数据的有效特征,在原始自编码器的基础上加入稀疏限制和"损伤噪声",提高特征表达的鲁棒性;在微调阶段,通过反向传播神经网络(BPNN)对参数进行微调,提高故障识别的准确率。仿真结果表明,该方法对于滚动轴承的故障诊断在稳定性、准确率等方面均优于反向传播神经网络(BPNN)和支持向量机(SVM)。

全文