针对单目标跟踪问题,提出基于改进粒子滤波的稀疏子空间单目标跟踪算法。在改进的粒子滤波中提出将样本分为正、负和过渡样本,减小粒子退化带来的影响,通过仿真实验验证改进粒子滤波器可提高目标跟踪的鲁棒性。仿照人眼视觉神经系统,将稀疏子空间引入粒子滤波中,建立一个稀疏最优化模型,获得稀疏矩阵,稀疏子空间有针对性地对目标进行聚类,得到聚类中心位置实现目标跟踪。经过在相同视频序列实验与基本粒子滤波同mean-shift算法目标跟踪的实验对比可知,单目标跟踪的快速性和鲁棒性得到了很大提高。