摘要
目的:探索基于深度学习的文本分类方法在生物医学文本的学科分类中是否具有更好的分类性能。方法:以中国医院科技量值研究中累积的神经病学科、消化病学科、肿瘤学科的SCI论文为数据来源,分别训练并测试CNN、LSTM、LSTM-CNN、LSTM-attention及SVM模型并评估其性能。结果:5类模型中,双层CNN模型的分类性能最好,CNN、LSTM、LSTM-CNN和LSTM-attention模型的分类性能均优于SVM模型。结论:基于深度学习的文本分类方法可提高生物医学文本的学科分类精度,推动医院评价和学科评估的发展。
-
单位北京协和医学院; 中国医学科学院医学信息研究所