摘要

基于会话的推荐旨在利用匿名会话预测用户行为。现有基于图神经网络(GNN)的会话推荐算法大多仅针对当前会话提取用户偏好,却忽略了来自其他会话的高阶多元关系从而影响推荐精度。此外,由于会话推荐所采用的短时交互序列包含的信息非常有限,使其更容易受到数据稀疏性的影响。针对上述问题,本文提出了自监督混合图神经网络会话推荐模型(SHGN)。该模型首先通过将原始数据构建为三个视图来描述会话与物品关系,然后通过多头图注意力网络捕获会话内部物品的低阶转换信息,提出了残差图卷积网络捕获物品和会话的高阶转换信息;最后融合自监督学习(SSL)作为辅助任务,通过最大化不同通道学习到的会话嵌入的互信息,对原始数据进行数据增强从而提升推荐性能。为了验证该方法的有效性,在Tmall、Diginetica、Nowplaying、Yoochoose四个基准数据集上与SR-GNN,GCE-GNN,DHCN等主流基线模型进行了对比实验,实验结果在P@20,MRR@20等性能指标上均取得了一定提升。