摘要

臂丛神经超声影像信噪比(SNR)低、边缘模糊且人工分割难度较大。现有的分割模型虽然取得了一些成果,但碍于臂丛神经结构目标区域小、形状不规则,分割效果欠佳。针对上述问题,设计基于多尺度特征融合的臂丛神经分割模型,即针对神经部位分割的特征金字塔网络(Ner-FPN)。在特征提取阶段,设计一种仿Xception的结构进行多尺度特征提取;在预测分割阶段,采用双向FPN结构进行特征融合预测。在Kaggle臂丛神经超声影像分割竞赛的BP数据集上的实验结果表明,Ner-FPN模型对臂丛神经分割的Dice相似系数(DSC)可达0.703,与主流的深度学习分割模型U-Net、SegNet相比,分别提高了10.7个百分点和14.5个百分点,对比相同数据集中的其他改进模型QU-Net和Efficient+U-Net,DSC分别提高了5.5个百分点和3.4个百分点,可见所提模型能够起到辅助诊断的效果。