摘要
近年来,基于WiFi的井下人员定位算法受到了广泛关注,为进一步提高定位算法的速度和精度,提出了一种基于量子粒子群(QPSO)优化极限学习机(ELM)算法的井下人员快速定位方法。首先将优化的K均值聚类算法(K-means)引入定位流程,通过对位置指纹库进行聚类划分,降低单次识别需要的时间;其次利用QPSO算法优越的优化能力,提高ELM算法的定位精度,最终实现对井下人员的高效、准确定位。仿真实验结果表明,提出的基于量子粒子群优化极限学习机的井下快速定位方法,能够提高定位的精度和效率,具有较高的实用价值和工程意义。
- 单位