摘要

针对行人检测的尺度变化问题,提出一种基于改进多尺度残差网络无锚检测算法(IMSNet)。将Res2Net残差模块中多尺度特征提取融入ResNeXt,将改进后的网络作为主干网络(Res2NeXt*),使主干网络包含不同数量、不同组合的感受野;利用多个较小卷积核等效替代单个较大卷积核,增加网络深度并减少网络参数量;对细化的多尺度卷积特征级联融合做卷积运算,将行人检测简化为中心点和尺度预测任务。实验结果表明,IMSNet对CityPersons和Caltech数据集Reasonable设置分别实现了10.6%和2.6%的平均漏检率,检测每张图像仅需0.28 s。

全文