摘要

基于2018年1月-2022年6月石家庄市逐日首要污染类型数据和ERA5逐6 h再分析气象要素资料,构建了机器学习所需的多维特征量数据集,并利用随机森林算法学习训练,得到石家庄市首要污染物分类预报最佳模型,实现了不同气象条件下首要污染物分类识别及预报。结果表明,随机森林模型预报首要污染物分类准确率达到76%,对PM10、PM2.5首要污染物分类结果最好,召回率达到93%、89%,O3首要污染物次之,召回率为74%。与中国气象局下发的空气质量指导产品(CMA-ZD)和国家级雾霾数值预报业务系统产品(CUACE)相比,预报准确率分别提升11%、36%,明显优于指导产品。