摘要
针对重型机械臂的电液驱动系统因非线性、参数时变等因素引起的控制精度下降问题,提出了一种基于RBF神经网络辨识动态负载的反步控制策略。以某锚杆钻车重型机械臂的电液系统为例,建立了系统的数学模型,将其分解为系统内部状态反馈、控制器驱动及外部负载驱动这3个动力学部分。考虑电液系统内部参数变化的缓慢性,通过离线辨识的方法,得到系统内部状态反馈中的标称模型参数。控制器的设计采用反步法,其输出计算需要对外部负载进行辨识,对此采用RBF神经网络进行动态负载辨识,辨识与控制的动态过程及设计原则依据Lyapunov稳定性原理。仿真与实验结果表明:所设计的控制算法有效提高了机械臂的位置跟踪精度,具有响应速度快、轨迹误差小的特点;控制器输出的控制量也相对较小和平滑。
-
单位中南大学; 机电工程学院