摘要

提出了基于稀疏表示的声扫描显微镜(Scanningacousticmicroscope,SAM)图像超分辨率重构方法,以解决其空间检测分辨率受超声波频率和穿透深度的限制,原始SAM图像分辨率较低,不利于封装缺陷辨识等问题。通过字典设计训练和稀疏系数α求解获得了重构的高分辨率SAM图像,利用Levenberg-Marquardt算法改进BP神经网络(LM-BP),并用于倒装芯片焊点缺陷识别。与原始图像及双三次插值图像相比,稀疏重构图像的峰值信噪比明显增大,提高了SAM图像质量,减小了芯片焊点的错误识别数目,错误率降至2.76%。试验结果表明稀疏表示的SAM重构算法和LM-BP神经网络训练速度快、识别精度高,可用于高密度半导体封装缺陷的检测及可靠性评估。