摘要
本文提出了一种基于深度学习的雷达目标航迹起始方法,将目标航迹起始问题转化为深度神经网络模型二分类问题—"真实航迹"类和"虚假航迹"类。首先对空间配准后的目标点迹进行环形波门粗关联,得到粗关联暂时航迹;对粗关联暂时航迹进行特征向量建模,获得深度神经网络模型输入向量;利用仿真系统雷达数据,提取神经网络模型训练样本,设计深度全连接神经网络结构,训练网络模型得到优化的模型参数;使用训练好的模型参数实时计算目标起始航迹。仿真试验证明了该算法的有效性。
- 单位
本文提出了一种基于深度学习的雷达目标航迹起始方法,将目标航迹起始问题转化为深度神经网络模型二分类问题—"真实航迹"类和"虚假航迹"类。首先对空间配准后的目标点迹进行环形波门粗关联,得到粗关联暂时航迹;对粗关联暂时航迹进行特征向量建模,获得深度神经网络模型输入向量;利用仿真系统雷达数据,提取神经网络模型训练样本,设计深度全连接神经网络结构,训练网络模型得到优化的模型参数;使用训练好的模型参数实时计算目标起始航迹。仿真试验证明了该算法的有效性。