摘要

针对现有的在人脸表情识别中应用的卷积神经网络结构不够轻量,难以精确提取人脸表情特征,且需要大量表情标记数据等问题,提出一种基于注意力机制的人脸表情识别迁移学习方法。设计一个轻量的网络结构,在其基础上进行特征分组并建立空间增强注意力机制,突出表情特征重点区域,利用迁移学习在目标函数中构造一个基于log-Euclidean距离的损失项来减小迁移学习中源域与目标域之间的相关性差异。在数据集JAFFE和CK+上的实验结果表明,该方法相比其它人脸表情识别方法具有更优的识别能力。

全文