摘要

针对植物病害识别模型结构复杂且依赖于人为设计网络结构等问题,通过神经网络结构搜索(NAS),提出一种基于队列分块的神经网络结构搜索方法(NNSS),可实现超轻量级高精度植物叶片图像识别模型的自动构建。首先将12种在经济和环境下有益的植物共计22类植物叶片图像作为训练样本,利用模糊c均值聚类(FCM)算法分割植物叶片的感染点,以获得叶片受关注的区域信息;通过图像像素的灰度空间相关性,采用快速灰度共生矩阵(FGLCM)算法提取6类受关注区域的纹理特征信息,获得的特征向量运用主成分变换选择重要特征;提出队列分块的局部搜索空间构造方法,将特征信息通过自动构建的模型进行分类。结果表明,NNSS方法取得了98.33%的准确率,特异性和灵敏性表现最优。相比于AlexNet、GoogLeNet、InceptionV3和VGGNet-16模型,改进VGG-INCEP16模型的性能得到进一步提升,但仍低于NNSS方法,这是由于该方法能结合数据集搜索合适的网络结构,对比次优VGG-INCEP16模型准确率至少提高了2.1%。研究结果显示,NNSS方法能够实现准确识别植物病害,对于神经网络模型结构自动搜索的未来具有较高的实际应用价值。